Density renormalization group for classical liquids
نویسندگان
چکیده
منابع مشابه
Density Matrix Renormalization Group Method for 2D Classical Models
Synopsis The density matrix renormalization group (DMRG) method is applied to the interaction round a face (IRF) model. When the transfer matrix is asymmetric, singular-value decomposition of the density matrix is required. A trial numerical calculation is performed on the square lattice Ising model, which is a special case of the IRF model.
متن کاملDensity Matrix Renormalization Group for Dummies
We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch. An open source version of the code can be found at: http://qti.sns.it/dmrg/phome.html .
متن کاملDensity-matrix renormalization group algorithms
The Density Matrix Renormalization Group (DMRG) was developed by White [1, 2] in 1992 to overcome the problems arising in the application of real-space renormalization groups to quantum lattice many-body systems in solid-state physics. Since then the approach has been extended to a great variety of problems in all fields of physics and even in quantum chemistry. The numerous applications of DMR...
متن کاملThe density-matrix renormalization group
The density-matrix renormalization group sDMRGd is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly become the method of choice for nume...
متن کاملDynamical density-matrix renormalization group
The dynamical density-matrix renormalization group (DDMRG) method is a numerical technique for calculating the zero-temperature dynamical properties in low-dimensional quantum many-body systems. For the onedimensional Hubbard model and its extensions, DDMRG allows for accurate calculations of these properties for lattices with hundreds of sites and particles and for any excitation energy. The k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical and Experimental Physics
سال: 2019
ISSN: 2050-3911
DOI: 10.1093/ptep/pty148